Indholdsfortegnelse:
- Trin 1: Påkrævet hardware:
- Trin 2: Hardware -tilslutning:
- Trin 3: Kode til måling af temperatur:
- Trin 4: Ansøgninger:
Video: Måling af temperatur ved hjælp af ADT75 og Arduino Nano: 4 trin
2024 Forfatter: John Day | [email protected]. Sidst ændret: 2024-01-30 08:27
ADT75 er en meget præcis, digital temperatursensor. Det består af en båndgab temperatur sensor og en 12-bit analog til digital konverter til overvågning og digitalisering af temperaturen. Dens meget følsomme sensor gør den kompetent nok til at måle omgivelsestemperaturen præcist.
I denne vejledning er grænsefladen mellem ADT75 sensormodulet og arduino nano illustreret. For at aflæse temperaturværdierne har vi brugt arduino med en I2c -adapter. Denne I2C -adapter gør forbindelsen til sensormodulet let og mere pålidelig.
Trin 1: Påkrævet hardware:
De materialer, vi har brug for for at nå vores mål, omfatter følgende hardwarekomponenter:
1. ADT75
2. Arduino Nano
3. I2C -kabel
4. I2C Shield til Arduino Nano
Trin 2: Hardware -tilslutning:
Hardwaretilslutningssektionen forklarer dybest set de nødvendige ledningsforbindelser mellem sensoren og arduino nano. At sikre korrekte forbindelser er den grundlæggende nødvendighed, mens du arbejder på et hvilket som helst system til den ønskede output. Så de nødvendige forbindelser er som følger:
ADT75 fungerer over I2C. Her er eksemplet på ledningsdiagram, der viser, hvordan du tilslutter hver grænseflade på sensoren.
Out-of-the-box er tavlen konfigureret til en I2C-grænseflade, som sådan anbefaler vi at bruge denne tilslutning, hvis du ellers er agnostiker.
Alt du behøver er fire ledninger! Der kræves kun fire tilslutninger Vcc, Gnd, SCL og SDA ben, og disse er forbundet ved hjælp af I2C kabel.
Disse forbindelser er vist på billederne ovenfor.
Trin 3: Kode til måling af temperatur:
Lad os starte med arduino -koden nu.
Mens vi bruger sensormodulet med Arduino, inkluderer vi Wire.h -biblioteket. "Wire" -biblioteket indeholder de funktioner, der letter i2c -kommunikationen mellem sensoren og Arduino -kortet.
Hele Arduino -koden er angivet nedenfor for brugerens bekvemmelighed:
#omfatte
// ADT75 I2C -adressen er 0x48 (72)
#define Addr 0x48
ugyldig opsætning ()
{
// Initialiser I2C -kommunikation som Master
Wire.begin ();
// Initialiser seriel kommunikation, indstil baudhastighed = 9600
Serial.begin (9600);
forsinkelse (300);
}
hulrum ()
{
usignerede int -data [2];
// Start I2C -transmission
Wire.beginTransmission (Addr);
// Vælg dataregister
Wire.write (0x00);
// Stop I2C -transmission
Wire.endTransmission ();
// Anmod om 2 byte data
Wire.requestFrom (Addr, 2);
// Læs 2 bytes data
// temp msb, temp lsb
hvis (Wire.available () == 2)
{
data [0] = Wire.read ();
data [1] = Wire.read ();
}
// Konverter dataene til 12 bit
int temp = ((data [0] * 256) + data [1]) / 16;
hvis (temp> 2047)
{
temp -= 4096;
}
float cTemp = temp * 0,0625;
float fTemp = (cTemp * 1.8) + 32;
// Output data til seriel skærm
Serial.print ("Temperatur i Celsius:");
Serial.print (cTemp);
Serial.println ("C");
Serial.print ("Temperatur i Fahrenheit:");
Serial.print (fTemp);
Serial.println ("F");
forsinkelse (500);
}
I trådbiblioteket bruges Wire.write () og Wire.read () til at skrive kommandoer og læse sensoroutput.
Serial.print () og Serial.println () bruges til at vise sensorens output på den serielle monitor på Arduino IDE.
Sensorens output er vist på billedet ovenfor.
Trin 4: Ansøgninger:
ADT75 er en meget præcis, digital temperatursensor. Det kan bruges i en bred vifte af systemer, herunder miljøkontrolsystemer, computer termisk overvågning osv. Det kan også inkorporeres i industrielle processtyringer såvel som monitorer til strømsystemer.
Anbefalede:
Måling af fugtighed og temperatur ved hjælp af HIH6130 og Arduino Nano: 4 trin
Måling af fugtighed og temperatur ved hjælp af HIH6130 og Arduino Nano: HIH6130 er en luftfugtigheds- og temperatursensor med digital udgang. Disse sensorer giver et nøjagtighedsniveau på ± 4% RF. Med brancheførende langsigtet stabilitet, ægte temperaturkompenseret digital I2C, brancheførende pålidelighed, energieffektivitet
Måling af temperatur og fugtighed ved hjælp af HDC1000 og Arduino Nano: 4 trin
Måling af temperatur og luftfugtighed ved hjælp af HDC1000 og Arduino Nano: HDC1000 er en digital fugtighedsføler med integreret temperatursensor, der giver fremragende måleenøjagtighed ved meget lav effekt. Enheden måler fugtighed baseret på en ny kapacitiv sensor. Fugtigheds- og temperatursensorerne er fac
Måling af fugtighed og temperatur ved hjælp af HTS221 og Arduino Nano: 4 trin
Måling af fugtighed og temperatur ved hjælp af HTS221 og Arduino Nano: HTS221 er en ultrakompakt kapacitiv digital sensor til relativ luftfugtighed og temperatur. Det inkluderer et følerelement og et blandet signal applikationsspecifikt integreret kredsløb (ASIC) til at levere måleoplysningerne gennem digital seriel
Måling af temperatur ved hjælp af ADT75 og Raspberry Pi: 4 trin
Måling af temperatur ved hjælp af ADT75 og Raspberry Pi: ADT75 er en meget præcis, digital temperatursensor. Det består af en båndgab temperatur sensor og en 12-bit analog til digital konverter til overvågning og digitalisering af temperaturen. Dens meget følsomme sensor gør den kompetent nok for mig
Måling af temperatur ved hjælp af ADT75 og Particle Photon: 4 trin
Måling af temperatur ved hjælp af ADT75 og Particle Photon: ADT75 er en meget præcis, digital temperatursensor. Det består af en båndgab temperatur sensor og en 12-bit analog til digital konverter til overvågning og digitalisering af temperaturen. Dens meget følsomme sensor gør den kompetent nok for mig