Indholdsfortegnelse:
- Trin 1: Påkrævet hardware:
- Trin 2: Hardware -tilslutning:
- Trin 3: Kode til måling af acceleration:
- Trin 4: Ansøgninger:
Video: Måling af acceleration ved hjælp af ADXL345 og Arduino Nano: 4 trin
2024 Forfatter: John Day | [email protected]. Sidst ændret: 2024-01-30 08:27
ADXL345 er et lille, tyndt, ultralavt, 3-akset accelerometer med høj opløsning (13-bit) måling på op til ± 16 g. Digitale outputdata er formateret som 16-bit tokomplement og er tilgængelige via I2 C digital interface. Det måler den statiske tyngdekraftacceleration i tilt-sensing applikationer samt dynamisk acceleration som følge af bevægelse eller stød. Dens høje opløsning (3,9 mg/LSB) muliggør måling af hældningsændringer mindre end 1,0 °.
I denne vejledning er grænsefladen mellem ADXL345 sensormodul og arduino nano illustreret. For at aflæse accelerationsværdierne har vi brugt arduino med en I2c -adapter. Denne I2C -adapter gør forbindelsen til sensormodulet let og mere pålidelig.
Trin 1: Påkrævet hardware:
De materialer, vi har brug for for at nå vores mål, omfatter følgende hardwarekomponenter:
1. ADXL345
2. Arduino Nano
3. I2C -kabel
4. I2C Shield til Arduino Nano
Trin 2: Hardware -tilslutning:
Hardwaretilslutningssektionen forklarer dybest set de nødvendige ledningsforbindelser mellem sensoren og arduino nano. At sikre korrekte forbindelser er den grundlæggende nødvendighed, mens du arbejder på et hvilket som helst system til den ønskede output. Så de nødvendige forbindelser er som følger:
ADXL345 fungerer over I2C. Her er eksemplet på ledningsdiagram, der viser, hvordan du tilslutter hver grænseflade på sensoren.
Out-of-the-box er tavlen konfigureret til en I2C-grænseflade, som sådan anbefaler vi at bruge denne tilslutning, hvis du ellers er agnostiker.
Alt du behøver er fire ledninger! Der kræves kun fire tilslutninger Vcc, Gnd, SCL og SDA ben, og disse er forbundet ved hjælp af I2C kabel.
Disse forbindelser er vist på billederne ovenfor.
Trin 3: Kode til måling af acceleration:
Lad os starte med arduino -koden nu.
Mens vi bruger sensormodulet med arduino, inkluderer vi Wire.h -bibliotek. "Wire" -biblioteket indeholder de funktioner, der letter i2c -kommunikationen mellem sensoren og arduino -kortet.
Hele arduino -koden er angivet nedenfor for brugerens bekvemmelighed:
#omfatte
// ADXL345 I2C -adressen er 0x53 (83)
#define Addr 0x53
ugyldig opsætning ()
{
// Initialiser I2C -kommunikation som MASTER
Wire.begin ();
// Initialiser seriel kommunikation, indstil baudhastighed = 9600
Serial.begin (9600);
// Start I2C -transmission
Wire.beginTransmission (Addr);
// Vælg båndbreddehastighedsregister
Wire.write (0x2C);
// Normal tilstand, Output datahastighed = 100 Hz
Wire.write (0x0A);
// Stop I2C -transmission
Wire.endTransmission ();
// Start I2C -transmission
Wire.beginTransmission (Addr);
// Vælg effektstyringsregister
Wire.write (0x2D);
// Deaktiver automatisk søvn
Wire.write (0x08);
// Stop I2C -transmission
Wire.endTransmission ();
// Start I2C -transmission
Wire.beginTransmission (Addr);
// Vælg dataformatregister
Wire.write (0x31);
// Selvtest deaktiveret, 4-leder interface, Fuld opløsning, Område = +/- 2g
Wire.write (0x08);
// Stop I2C -transmission
Wire.endTransmission ();
forsinkelse (300);
}
hulrum ()
{
usignerede int -data [6];
for (int i = 0; i <6; i ++)
{
// Start I2C -transmission
Wire.beginTransmission (Addr);
// Vælg dataregister
Wire.write ((50 + i));
// Stop I2C -transmission
Wire.endTransmission ();
// Anmod om 1 byte data
Wire.requestFrom (Addr, 1);
// Læs 6 bytes data
// xAccl lsb, xAccl msb, yAccl lsb, yAccl msb, zAccl lsb, zAccl msb
hvis (Wire.available () == 1)
{
data = Wire.read ();
}
}
// Konverter dataene til 10-bit
int xAccl = (((data [1] & 0x03) * 256) + data [0]);
hvis (xAccl> 511)
{
xAccl -= 1024;
}
int yAccl = (((data [3] & 0x03) * 256) + data [2]);
hvis (yAccl> 511)
{
yAccl -= 1024;
}
int zAccl = (((data [5] & 0x03) * 256) + data [4]);
hvis (zAccl> 511)
{
zAccl -= 1024;
}
// Output data til seriel skærm
Serial.print ("Acceleration i X-aksen er:");
Serial.println (xAccl);
Serial.print ("Acceleration i Y-akse er:");
Serial.println (yAccl);
Serial.print ("Acceleration i Z-aksen er:");
Serial.println (zAccl);
forsinkelse (300);
}
I trådbiblioteket bruges Wire.write () og Wire.read () til at skrive kommandoer og læse sensoroutput.
Serial.print () og Serial.println () bruges til at vise sensorens output på den serielle monitor på Arduino IDE.
Sensorens output er vist på billedet ovenfor.
Trin 4: Ansøgninger:
ADXL345 er et lille, tyndt, ultralavt, 3-akset accelerometer, der kan bruges i håndsæt, medicinsk instrumentering osv. Dets anvendelse omfatter også spil- og pegeudstyr, industriel instrumentering, personlige navigationsenheder og beskyttelse af harddisk (HDD).
Anbefalede:
Måling af acceleration ved hjælp af ADXL345 og Particle Photon: 4 trin
Måling af acceleration ved hjælp af ADXL345 og Particle Photon: ADXL345 er et lille, tyndt, ultralavt, 3-akset accelerometer med høj opløsning (13-bit) måling på op til ± 16 g. Digitale outputdata er formateret som 16-bit tokomplement og er tilgængelige via I2 C digital interface. Det måler
Måling af acceleration ved hjælp af H3LIS331DL og Arduino Nano: 4 trin
Måling af acceleration ved hjælp af H3LIS331DL og Arduino Nano: H3LIS331DL, er et laveffekt højtydende 3-akset lineært accelerometer, der tilhører "nano" -familien, med digitalt I²C serielt interface. H3LIS331DL har bruger -valgbare fulde skalaer på ± 100g/± 200g/± 400g, og den er i stand til at måle accelerationer m
Måling af acceleration ved hjælp af H3LIS331DL og partikelfoton: 4 trin
Måling af acceleration ved hjælp af H3LIS331DL og Particle Photon: H3LIS331DL, er et laveffekt højtydende 3-akset lineært accelerometer, der tilhører "nano" -familien, med digitalt I²C serielt interface. H3LIS331DL har bruger -valgbare fulde skalaer på ± 100g/± 200g/± 400g, og den er i stand til at måle accelerationer m
Måling af acceleration ved hjælp af ADXL345 og Raspberry Pi: 4 trin
Måling af acceleration ved hjælp af ADXL345 og Raspberry Pi: ADXL345 er et lille, tyndt, ultralavt, 3-akset accelerometer med høj opløsning (13-bit) måling på op til ± 16 g. Digitale outputdata er formateret som 16-bit tokomplement og er tilgængelige via I2 C digital interface. Det måler
Måling af acceleration ved hjælp af H3LIS331DL og Raspberry Pi: 4 trin
Måling af acceleration ved hjælp af H3LIS331DL og Raspberry Pi: H3LIS331DL, er et laveffekt højtydende 3-akset lineært accelerometer, der tilhører "nano" -familien, med digitalt I²C serielt interface. H3LIS331DL har bruger -valgbare fulde skalaer på ± 100g/± 200g/± 400g, og den er i stand til at måle accelerationer m