Indholdsfortegnelse:
- Trin 1: Création Du Circuit Analogique
- Trin 2: Choix Des Composants
- Trin 3: Genanalyse af PCB
- Trin 4: Réalisation De La Partie Mécanique (support Et Instrument)
- Trin 5: Tilslut MCP-Hindbær
- Trin 6: Acquisition Des Données
- Trin 7: FFT
- Trin 8: Génération Du Son
Video: Polyflûte: 8 trin
2024 Forfatter: John Day | [email protected]. Sidst ændret: 2024-01-30 08:26
Le projet Polyflûte consiste à réaliser un instrument de musiquenumérique.
Le but est de créer un instrument de musique respectant des conditions particulières; Cet instrument doit être:
-Autonome og bærbar (batteri, bunke …)
-Autodidacte (Enseigner à l’utilisateur à partir d’un site internet, le fonctionnement et la construction de l’appareil)
-Auto tune (Produire un son musical à partir une fréquence relevanté dans l’environnement -alentour)
Le but est donc de réussir à convertir une onde vibratoire, oscillante de la vie courante ou issue d'objets du quotidien en onde sonore et musicale.
Trin 1: Création Du Circuit Analogique
Notre système se base sur le principe de la détection delumière: On place une LED and photodiode face à face séparé par une hélice propulsé en roue libre par un ventilateur. Ainsi le passage d'une pâle devant la photodiode créera un signal de type T. O. R (plutôt proche du sinusoïdale en prenant en compte le temps de réception de la lumière).
Le capteur constitue le cœur de la partie analogique. Nous avons donc décidé de distinguer un circuit d'émission et un circuit de réception. Le circuit est alimenté par 6 bunker genopladelige på 1,2 V til i alt 7,2V. Le circuit d'émission est constitué d'une LED et d'un moteur branché en parallèle (une diode de protection a également été placée pour éviter les retours de courants). Le circuit d'émission se constitue d'une photodiode dont the signal est amplifié par un AOP; ainsi que de 2 filtre passe bas d’ordre 1 filtrant à environment 80 Hz (fréquence maximale de rotation de l'hélice).
Trin 2: Choix Des Composants
Une fois le circuit théorique établit, on choisit les composants les plus adaptés au montage.
Vous retrouverez ci-dessous les références et valeurs des différents composants (en se basant sur le schéma électronique précédent):
LED: SFH 4550
Ventilatør: MB40200V1 (5V)
Diode: 1N4001
Fotodiode: SFH 203
AOP: LM358N
KAN: MCP3008
Modstand R1 (LED): 47 ohm
Modstand R2 (Filtre 1): 220 Ohm
Modstand R3 (Filtre 2): 220 Ohm
Modstand R4 (Filtre en sortie de Vref): 1 kOhms
Kondensatør C1 (Filtre): 10nF
Kondensatør C2 (Filtre): 10nF
Kondensatør C3 (Filtre en sortie de Vref): 5µF
Regulering: 0J7031 reg09b
Tilslutning 40 pins
Hindbær PI 2 Model B
Hélice d'hélicoptère de 3, 8 cm
6 bunker genopladelig 1,2 V
Trin 3: Genanalyse af PCB
La réalisation du PCB (Printed Circuit Board) s'est effectuée en plusieurs étapes:
- Le dessin de la carte (Agencement des composants)
- Le routage des composants sur la carte et Impression de la carte
- Soudage des composants
Le dessin et le routage de la carte ont été faits sur le logiciel ALTIUM Designer (logiciel utilisé en entreprise pour le routage de PCB). Nous avons donc dû nous initier au logiciel. Les composants ont été disposés de manière à réduire la taille de la carte (9 cm de lange, 5 cm de store). Le routage fut la partie la plus délicate, car la carte étant imprimé en double couche nous devions décidés de la disposition des connections en couche Top ou Bottom. Une fois la carte imprimée, nous avons soudés les composants sur des supports afin de pouvoir enlever les composants en cas de défaillances ou de changements de composants. Nous avons également dû placer sur la carte le connecteur reliant le PCB et la Rasberry. Du kan ikke identificere disse porte SPI de la Rasberry og faire la bonne correspondance med PCB.
Vous trouverez les fichiers Gerber (fichier Altium Designer).
Trin 4: Réalisation De La Partie Mécanique (support Et Instrument)
Røret består af en flaske, der er et rør i PVC (plomberie), og som har en længde på 15 cm og 4, 1 cm i diameter. På retrouve 4 trous de 1 cm de diamètre espacé chacun de 2 cm. A l'intérieur on retrouve une hélice soutenu par une tige and plastique de 2 cm. Le PCB et le tube sont fixés sur une plaque en bois à fixé l'aide d'entretoises et de vis. Sur la partie gauche du tube på en fixé le ventilateur à l'aide d'un scotch de câble électrique. De l'autre côté, le tube est bouché par un morceau de carton.
- rør og PVC
- plak og bois d'environ 30 cm x 30 cm
- 4 entretoises de 3, 5 cm
- 4 écrous
- Un interrupteur 2 positioner classique
- Support de pile
- Karton
Trin 5: Tilslut MCP-Hindbær
La connexion MCP-3008/Rasberry er essentielle pour la communication, réception transmission des données.
La connexion Hindbær/MCP er détaillée dans les images.
La connexion s'effectue en bus SPI, le code d'initialisation du bus est joint dans les fichiers.
Trin 6: Acquisition Des Données
Une fois la Raspberry connectée à un convertisseur analogique/numérique de type MCP3008 à l'aide d'un bus SPI, il faut maintenant acquérir les données souhaitées. Nous ne relevons qu'un type de valeur, l'amplitude de notre signal fréquentielle, sur la chaîne 1 du MCP3008. Ces valeurs sont stockées dans un tableau de taille 512: on choisit une puissance de 2 pour faciliter les algorithmes de transformé de Fourier à venir, et plus le nombre de points est élevé plus le signal discret sera précis.
L'acquisition des données ne peut cependant pas se faire de manière aléatoire, en effet la fréquence d'acquisition et donc la fréquence d'échantillonnage est primordiale. Nous avons déterminé empiriquement que notre signal n'atteignait jamais des fréquences supérieures à 80Hz. Hæld respecter Shannon notre fréquence d'échantillonnage doit être supérieure à 160Hz, nous avons choisi une Fe à 250Hz.
Afin d'acquérir les données à cette fréquence, nous avons créé un timer qui fait appel à notre fonction d'acquisition toutes les 4ms (Te = 1/Fe = 4ms). Le premier thread de notre program contient donc la fonction du timer qui effectue l'acquisition des données.
Trin 7: FFT
Une fois le tableau de données d'acquisition rempli, on peut effectuer la transformer de Fourier discrète pour retrouver la fréquence du signal.
På udnytte pour cela la bibliothèque GSL qui permet à partir d'un tableau de données, d'avoir le tableau d'amplitude des raies fréquentielles composant ce signal. En écartant la première case du tableau contenant l'amplitude des composantes fortsætter på peut retrouver l'indice i de la fréquence qui a la plus forte amplitude à l'aide de la formule suivante: Freq = i*Fe/(2*Nb_Points).
Notre fréquence d'échantillonnage étant 250Hz og le nombre de points acquis étant 512.
Trin 8: Génération Du Son
Maintenant que l'on a récupéré la fréquence du signal il suffit de générer un sinus pour avoir un son. Deux solutions se sont ouvertes à nous: Émettre un sinus directement à partir des fréquences erhverver en les multipliant pour les rendre hørbar, ou bien associer des fréquences précises aux plages des différentes notes de notre prototype.
Nous avons testé les deux méthodes et nous avons finalement retenu la seconde plus concluante. Les notes jouées sont celle de la gamme 4, cependant les contraintes de notre système nous permet seulement d'avoir 8 plages differes et ainsi de jouer 8 notes différentes: Do, Ré, Mi, Fa, Sol, Sol bémol, La et Si.
Enfin vous trouverez les codes complets des deux solutions citées au-dessus.
Anbefalede:
Arduino bil omvendt parkering alarmsystem - Trin for trin: 4 trin
Arduino bil omvendt parkering alarmsystem. Trin for trin: I dette projekt vil jeg designe en simpel Arduino bil omvendt parkeringssensorkreds ved hjælp af Arduino UNO og HC-SR04 ultralydssensor. Dette Arduino -baserede bilomvendt alarmsystem kan bruges til en autonom navigation, robotafstand og andre rækkevidde
Trin for trin pc -bygning: 9 trin
Trin for trin PC Building: Supplies: Hardware: MotherboardCPU & CPU -køler PSU (strømforsyningsenhed) Opbevaring (HDD/SSD) RAMGPU (ikke påkrævet) CaseTools: Skruetrækker ESD -armbånd/mathermal pasta m/applikator
Tre højttalerkredsløb -- Trin-for-trin vejledning: 3 trin
Tre højttalerkredsløb || Trin-for-trin vejledning: Højttalerkredsløb styrker lydsignalerne, der modtages fra miljøet til MIC og sender det til højttaleren, hvorfra forstærket lyd produceres. Her vil jeg vise dig tre forskellige måder at lave dette højttalerkredsløb på:
Trin-for-trin uddannelse i robotik med et sæt: 6 trin
Trin-for-trin uddannelse i robotteknologi med et kit: Efter ganske få måneder med at bygge min egen robot (se alle disse), og efter at jeg to gange havde dele mislykkedes, besluttede jeg at tage et skridt tilbage og tænke min strategi og retning. De flere måneders erfaring var til tider meget givende, og
Akustisk levitation med Arduino Uno trin for trin (8 trin): 8 trin
Akustisk levitation med Arduino Uno Step-by Step (8-trin): ultralyds lydtransducere L298N Dc kvindelig adapter strømforsyning med en han-DC-pin Arduino UNOBreadboard Sådan fungerer det: Først uploader du kode til Arduino Uno (det er en mikrokontroller udstyret med digital og analoge porte til konvertering af kode (C ++)